
sphinx_typesafe Documentation
Release

Richard Gomes

Sep 27, 2017

Contents

1 Python2 3
1.1 Syntax for Python2 using sphinx style docstrings . 3
1.2 Syntax for Python2 using decorator arguments . 4
1.3 You can use any Python type . 4

2 Python3 5
2.1 Syntax for Python3 . 5

3 Building from source 7

4 FAQ 9
4.1 Why it was called IcanHasTypeCheck ? . 9
4.2 Why is now called sphinx_typesafe ? . 9

5 Support 11

i

ii

sphinx_typesafe Documentation, Release

Code | Bugs | Forum | Docs | License | Contact

sphinx_typesafe is a decorator which enables dynamic type checking on Python method and function calls.
It works in conjunction with Sphinx-style docstrings, which makes it particularly convenient for keeping the code
documentation up-to-date with the code actually being executed.

• The decorator can be attached to any function or method.

• Raises TypeError if types of arguments do not match the specification.

• Raises TypeError if type of return value does not match the specification.

• Performs dynamic type checking.

Contents 1

http://github.com/frgomes/sphinx_typesafe
http://github.com/frgomes/sphinx_typesafe/issues
http://github.com/frgomes/sphinx_typesafe/wiki
http://sphinx_typesafe.readthedocs.org
http://opensource.org/licenses/Apache-2.0
http://github.com/~frgomes
http://sphinx-doc.org/markup/desc.html#info-field-lists

sphinx_typesafe Documentation, Release

2 Contents

CHAPTER 1

Python2

Since function annotations are not available in Python2 the way type checking for Python2 is a documentation con-
vention for parameters based on the info field lists of sphinx. So even when you don’t use type checking you can use
it to generate documentation.

Syntax for Python2 using sphinx style docstrings

This is the preferred way since you will be also documenting your code.

@typesafe
def foo(param_a, param_b, param_c):

"""
:type param_a: types.StringType
:type param_b: types.IntType
:type param_c: types.NotImplementedType
:rtype: types.BooleanType
"""
Do Something
return True

Note: Observe the usage of rtype to specify the type returned by the function. When rtype is not specified, it is
assumed to be types.NoneType.

Note: When a parameter specifies types.NotImplementedType, the type checking logic simply ignores that
parameter, which means that you can pass any type you wish.

3

http://sphinx-doc.org/markup/desc.html#info-field-lists

sphinx_typesafe Documentation, Release

Syntax for Python2 using decorator arguments

This is an alternative approach, useful in circunstances where Sphinx-style documentation is not allowed or desired,
for whatever reason.

@typesafe({ 'param_a' : 'str',
'param_b' : 'types.IntType',
'param_c' : 'own_module.OwnType',
'return' : 'bool' })

def foo(param_a, param_b, param_c):
""" Some Docstring Info """
Do Something
return True

Note: Observe the usage of return to specify the type returned by the function.

You can use any Python type

So if you have defined a Point class in module mod1 like below:

File: mod1.py

class Point(object):
def __init__(self, x = None, y = None):

""" Initialize the Point. Can be used to give x,y directly."""
self.x = x
self.y = y

then you can employ this type in your code like this:

from mod1 import Point

@typesafe
def foo(afunc):

"""
:type afunc: mod1.Point
:rtype: types.BooleanType
"""
return True

4 Chapter 1. Python2

CHAPTER 2

Python3

Warning: This is a tentative implementation which is not finished at the moment!!

The base technique is the Function Annotations proposed in PEP-3107 which is documented in Python3 What’s New
(see section New Syntax).

Syntax for Python3

@typesafe
def foo(param_a: str, param_b: int) -> bool:

Do Something
return True

• The @typesafe decorator will then check all arguments dynamically whenever the foo is called for valid types.

• As a quoting remark from the PEP 3107: “All annotated parameter types can be any python expression.”, but
for typechecking only types make sense, though.

The idea and parts of the implementation were inspired by the book: Pro Python (Expert’s Voice in Open Source)

5

http://www.python.org/dev/peps/pep-3107
http://docs.python.org/3.0/whatsnew/3.0.html
http://www.amazon.com/Python-Experts-Voice-Open-Source/dp/1430227575

sphinx_typesafe Documentation, Release

6 Chapter 2. Python3

CHAPTER 3

Building from source

Start from a clean and minimalist virtual environment, for example:

$ pip list
pip (1.4)
setuptools (2.1)
wsgiref (0.1.2)

Download sources and run test cases

$ git clone https://github.com/frgomes/sphinx_typesafe
$ cd sphinx_typesafe
$ python setup.py devtest && py.test

7

sphinx_typesafe Documentation, Release

8 Chapter 3. Building from source

CHAPTER 4

FAQ

Why it was called IcanHasTypeCheck ?

IcanHasTypeCheck (ICHTC), refers to the famous lolcats.

Why is now called sphinx_typesafe ?

Because typesafe tells immediatelly what it is about. Unfortunately, typesafe was already taken on PyPI, so
sphinx_typesafe seemed to be a good alternative name which also relates to the documentation standard adopted.

9

http://en.wikipedia.org/wiki/I_Can_Has_Cheezburger%3F

sphinx_typesafe Documentation, Release

10 Chapter 4. FAQ

CHAPTER 5

Support

Please find links on the top of this page.

11

	Python2
	Syntax for Python2 using sphinx style docstrings
	Syntax for Python2 using decorator arguments
	You can use any Python type

	Python3
	Syntax for Python3

	Building from source
	FAQ
	Why it was called IcanHasTypeCheck ?
	Why is now called sphinx_typesafe ?

	Support

